Manganese induces dopaminergic neurodegeneration via microglial activation in a rat model of manganism.

نویسندگان

  • Fang Zhao
  • Tongjian Cai
  • Mingchao Liu
  • Gang Zheng
  • Wenjing Luo
  • Jingyuan Chen
چکیده

Manganese is an essential trace element required for normal development and bodily functions. However, exposure of the brain to excessive amounts of manganese results in neurotoxicity. Although previous studies examining manganese neurotoxicity have focused on neuronal injury, especially direct injury to dopaminergic neurons, the effects of manganese-induced neurotoxicity on glial cells have not been reported. The current study was designed to examine the effect of manganese on microglial activation, and the underlying mechanism of manganese-induced dopaminergic neuronal injury in vivo. We established an animal model of manganism by intrastriatal injection of MnCl(2).4H(2)O into male Sprague-Dawley rats. One day after administration of manganese, a few microglial cells in the substantia nigra (SN) were activated, although the number of tyrosine hydroxylase (TH)-immunoreactive neurons in the SN was unaffected. Seven days after administration of manganese, a marked reduction in the number of TH-immunoreactive neurons was observed in the SN, and the majority of microglial cells were activated. We found that manganese upregulated inducible nitric oxide synthase (iNOS) and tumor necrosis factor alpha (TNF-alpha) gene expression, as well as iNOS, TNF-alpha, and interleukin-1beta (IL-1beta) protein levels in the SN. Furthermore, treatment with minocycline, an inhibitor of microglial activation, attenuated microglial activation and mitigated IL-1beta, TNF-alpha, and iNOS production as well as dopaminergic neurotoxicity induced by manganese. These results suggested that dopaminergic neurons could be damaged by manganese neurotoxicity, and that the activated microglial cells and their associated activation products played an important role in this neurodegenerative process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microglial activation induced by neurodegeneration: a proteomic analysis.

Neuroinflammation mediated by microglial activation appears to play an essential role in the pathogenesis of Parkinson disease; however, the mechanisms by which microglia are activated are not fully understood. Thus, we first evaluated the effects of two parkinsonian toxicants, manganese ethylene bisdithiocarbamate (Mn-EBDC) and 1-methyl-4-phenylpyridine (MPP+), on microglial activation as well...

متن کامل

Interactions between excessive manganese exposures and dietary iron-deficiency in neurodegeneration.

For nearly a century, manganese has been recognized as an essential nutrient for proper bone formation, lipid, amino acid and carbohydrate metabolism. While manganese deficiency is characterized by symptoms ranging from stunted growth and poor bone remodeling to ataxia, it is manganese toxicity that is far more devastating from a public health standpoint. Most cases of manganese toxicity are th...

متن کامل

Modulation of Lipopolysaccharide Stimulated Nuclear Factor kappa B Mediated iNOS/NO Production by Bromelain in Rat Primary Microglial Cells

Background: Microglial cells act as the sentinel of the central nervous system .They are involved in neuroprotection but are highly implicated in neurodegeneration of the aging brain. When over-activated, microglia release pro-inflammatory factors, such as nitric oxide (NO) and cytokines, which are critical in eliciting neuroinflammatory responses associated with neurodegenerative diseases. Thi...

متن کامل

Hemin Induces the Activation of NLRP3 Inflammasome in N9 Microglial Cells

Background: Hemin is an important sterile component that induces a neuroinflammatory response after intracerebral hemorrhage, in which NLRP3 inflammasome activation has also proved to be involved. Although microglial activation acts as a key contributor in the neuroinflammatory response, the relationship between hemin and NLRP3 in microglia remains poorly understood. Objective: To investigate w...

متن کامل

Microglial Activation in Rat Experimental Spinal Cord Injury Model

Background: The present study was designed to evaluate the secondary microglial activation processes after spinal cord injury (SCI). Methods: A quantitative histological study was performed to determine ED-1 positive cells, glial cell density, and cavitation size in untreated SCI rats at days 1, 2, and 4, and weeks 1, 2, 3, and 4. Results: The results of glial cell quantification along the 4900...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Toxicological sciences : an official journal of the Society of Toxicology

دوره 107 1  شماره 

صفحات  -

تاریخ انتشار 2009